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1.1 INTRODUCTION 

Hydrological events such as floods and droughts are multivariate 
because they are characterized by more than one correlated 
random variable. Therefore, a single variable analysis would only 
provide limited assessments of these events (Yue et al., 2001). 
Many studies have been done to derive multivariate distributions 
of random variables from flood or drought characteristics. The 
derivations were either from random variables of similar 
distributions, assumed as a joint normal distribution, or assumed 
independent (Zhang & Singh, 2006). However, in the actual 
situation, the correlated random variables are generally 
dependent, do not follow the normal distribution, and do not have 
the same type of marginal distribution. Therefore, deriving 
multivariate distribution that reflects the actual hydrological 
process is mathematically complicated. The method of copula was 
then introduced to overcome the mentioned problem. 

In the copula theory, the complexity of obtaining 
multivariate distributions by separating the analysis of marginals 
and the dependence structure of multivariate distribution is 
reduced. Furthermore, copula can provide a flexible approach 
that allows more choices of marginal distributions and 
dependence structures in the multivariate analysis (Nelson, 
2006; Kao & Govindaraju, 2008).  



2   Copula Modelling and Its Application  

1.2 WHAT IS COPULA? 

Let us start by defining copula. Copulas are functions developed 
by Sklar (1959) that link the univariate distribution functions to 
form a multivariate distribution function. Frechet, in the late 
fifties, queried how to determine the relationship between the 
multivariate distribution functions and its lower-dimensional 
margin. Sklar (1959) then answered this query by discovering 
that at least one function that always exists, which he named 
“copula”, that links a joint distribution to its marginal via the 
following expression: 

 
!(#!, #", … , ##) = ()*!(#!), *"(#"), … , *#(##)+, 

 
where #!, #", … , ## represent the continuous random variables 
and *!(#!), *"(#"), … , *#(##) are the marginal distributions. This 
is then reflected in the term copula, which originates from the 
Latin verb copulare, which means “to join together”. It usually 
consists of a combination of two or more uniform marginal 
distributions. The copula theory can overcome the limitations of 
the traditional approach that only focus on the same 
distributions for example bivariate gamma or bivariate weibull. 
Copula allows any distribution function as the marginal 
distributions to be joined in a distribution where the dependence 
structure of the variables is constructed. Zhang and Singh 
(2007a) have proven that the copula method can derive bivariate 
joint distributions of rainfall variables with different marginal 
distributions without assuming the variables are normal or 
independent. Hence, the copula method has been widely used in 
many fields of application due to its ability to incorporate 
dependency elements in the distribution. 
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Let us now define the copula based on the theorem 
from Sklar (1959) and some definitions from Nelson (2006). 
For n-dimensional continuous random variables {-!, -", … , -#} 
with marginal distributions, *!(#!), *"(#"), … , *#(##) there 
exists a unique copula C such that 

 
!(#!, #", … , ##) = ()*!(#!), *"(#"), … , *#(##)+ 

= ((/!, /", … , /#) (1.1) 
 
The joint distribution function of an n-copula is defined 

as a multivariate uniform distribution with the cumulative 
distribution function C mapping as shown below: 
 

(: [0,1]# → [0,1] 
 
where *$(#$) = /$ for k = 1, 2,…, n with 6$~6(0,1) and H is a 
joint distribution function with margins *!(#!), *"(#"), … , *#(##). 
 
Based on Sklar (1959), copula has the following properties: 
 
(1) Let / = [/!, /", … , /#] where /% = *%(#%) ∈ [0,1], if 9% = 0 

for any : ≤ < (at least one coordinate of u equals 0), 
then		((/1, /2, … , /() = 0. 

 
(2) ((/) = /%  if  all the coordinates are equal to 1 except /% , i.e., 

((1,1, … , /% , … ,1,1) = /% , for every : ∈ {1,2, …	, <}, /% ∈
[0,1]. 

 
(3) ((/!, /", … , /#)	is bounded i.e., 0 ≤ ((/!, /", … , /#) ≤ 1. 

This property represents the limit of the cumulative joint 
distribution, i.e., in the range[0,1]. 

 


